Viaduc de Millau

Le viaduc de Millau est un pont à haubans autoroutier franchissant la vallée du Tarn, dans le département de l'Aveyron, en France. Il franchit une brèche de 2 460 mètres de longueur et de 270 mètres de profondeur au point le plus haut, dans un panorama de grande qualité et avec des vents susceptibles de souffler à plus de 200 km/h.

<td class="navigation-only" colspan="2" style="border-top: 2px #9B99AF solid; font-size: 80%; background:inherit; text-align: right;">modifier </td>
Viaduc de Millau
Pays  France
Région Midi-Pyrénées
Ville Millau - Creissels
Latitude
Longitude
44° 05′ 14″ Nord
       03° 01′ 15″ Est
/ 44.08722, 3.02083
Franchit Tarn
Fonction Pont autoroutier, il porte l’A75
Type Pont à haubans
Longueur 2 460 m
Largeur 32 m
Hauteur 343 m
Hauteur libre 270 m
Matériau Béton armé - Acier
Construit en 2001 - 2004
  Géolocalisation sur la carte : France
Listes

Ponts remarquables les plus longs • suspendus • à haubans • en arc • romains • cantilever

Le viaduc de Millau est un pont à haubans autoroutier franchissant la vallée du Tarn, dans le département de l'Aveyron, en France. Il franchit une brèche de 2 460 mètres de longueur et de 270 mètres de profondeur au point le plus haut, dans un panorama de grande qualité et avec des vents susceptibles de souffler à plus de 200 km/h.

Dernier maillon de l’autoroute A75 permettant de relier Clermont-Ferrand à Béziers, ce projet a nécessité treize ans d'études techniques et financières. Les études ont commencé en 1988 et l’ouvrage a été inauguré le 17 décembre 2004, seulement trois ans après la pose de la première pierre. Conçu par Michel Virlogeux et ses équipes pour ce qui concerne le tracé et les principes de franchissement, l’ouvrage a été dessiné par l’architecte Norman Foster. D’un coût de 320 millions d’euros, il a été financé et réalisé par le groupe Eiffage dans le cadre d’une concession, la première de ce type puisque sa durée est de 75 ans.

L’ouvrage est actuellement le pont le plus haut du monde avec l'ensemble pile-pylône le plus haut au monde (P2 : 343 m), les deux piles les plus hautes au monde (P2 : 245 m et P3 : 221 m) et enfin le tablier qui culmine à 270 mètres au-dessus du Tarn. Il possède aussi le tablier haubané le plus long au monde (2 460 mètres). Il est composé de piles minces et dédoublées sur leur partie supérieure et d’un tablier métallique très fin avec seulement sept points d’appui au sol.

Le viaduc a permis de développer les activités commerciales et industrielles de la région aveyronnaise. Le tourisme autour du viaduc est très développé et sa construction a suscité l’intérêt de nombreuses personnalités politiques.

Histoire

L'autoroute A75

Article détaillé : Autoroute française A75.

L’autoroute A75 fait partie des quatre grands itinéraires nord-sud pour traverser la France avec les autoroutes A6 et A7 qui passent par la vallée du Rhône, les autoroutes A10 et A62 qui traversent le sud-ouest de la France et l'axe Vierzon-Limoges-Brive-Toulouse avec l'A20. Cet itinéraire, en complément de l'A71 d'Orléans à Clermont-Ferrand, permet d'ouvrir une quatrième voie à travers la France et de délester l‘axe rhodanien très utilisé par les camions pour relier le nord de l'Europe à la péninsule ibérique et les vacanciers pour rejoindre les bords de la Méditerranée. Elle désenclave le Massif central et la ville de Clermont-Ferrand en les ouvrant sur le sud. À une plus grande échelle, elle facilite le transit entre l’Europe du nord et la région parisienne d’une part et l’Espagne et l’ouest de la façade méditerranéenne d’autre part<ref group="D" name="maillon">Шаблон:P.8</ref>. Sa construction a commencé en 1975<ref>Шаблон:Ouvrage, p. 8</ref> et sera achevée en 2011 avec la mise en service de la liaison Pézenas-Béziers.

Le Tarn est une rivière qui coule d'est en ouest, au sud du Massif central, coupant donc l'axe nord-sud et formant une brèche de plus de 200 mètres difficile à franchir. Avant le viaduc, ce franchissement se faisait par un pont situé en fond de vallée, dans la ville de Millau. Millau était alors un très gros point noir routier, connu et redouté. Des kilomètres d'embouteillages se formaient chaque année au moment des grands flux estivaux<ref name="DPCampineo">Шаблон:Lien web, p. 2</ref>. Ces ralentissements font perdre tous les avantages de l'A75, dite autoroute d'aménagement du territoire et entièrement gratuite sur 340 kilomètres.

Treize ans d’études et de concertation

Si les avantages d’un franchissement autoroutier de la vallée du Tarn sont indéniables, plusieurs difficultés viennent émailler l’histoire du viaduc. Les premières difficultés à résoudre sont techniques : les dimensions de la brèche à franchir, les vents violents de plus de 200 km/h, les conditions climatiques et sismiques, nécessitent d’avoir recours à un ouvrage de dimensions exceptionnelles et soulèvent en outre quelques difficultés de réalisation.

1988-1991 - Choix du tracé

Études préliminaires

Les études préliminaires visant à déterminer le tracé de l’autoroute pour franchir la vallée du Tarn sont confiées au CETE Mediterranée, service de l’État, et sont réalisées en 1988-1989. Elles aboutissent à la proposition de quatre options de tracés<ref name= "dospres">Шаблон:Lien web, p. 3</ref>,<ref name= "Gillet">Шаблон:Lien web</ref> :

  • une option dite « grand Est » passant à l’est de Millau et franchissant à grande hauteur les vallées du Tarn et de la Dourbie par l’intermédiaire de deux grands ponts (portées de 800 à 1 000 m) dont la construction s'avère difficile. Bien qu’elle soit plus courte et plus favorable pour le trafic de transit, cette option est abandonnée car elle ne permet pas de desservir correctement Millau et sa région de façon satisfaisante puisqu’il faut utiliser la longue et sinueuse descente existante de La Cavalerie ;
  • une option dite « grand Ouest », empruntant la vallée du Cernon et plus longue que la précédente d’une douzaine de kilomètres. Elle n’est pas retenue car elle présente des impacts importants sur l’environnement notamment, au droit des villages pittoresques de Peyre et de Saint-Georges-de-Luzençon et elle est plus onéreuse ;
  • une option dite « proche de la RN9 » desservant bien Millau mais présentant des difficultés techniques et ayant un fort impact sur le milieu bâti existant ou projeté, également abandonnée ;
  • une option dite « médiane » à l’ouest de Millau bénéficiant d’une assez large approbation locale mais présentant des difficultés de réalisation d’ordre géologique, notamment au niveau du franchissement de la vallée du Tarn. Les investigations des experts concluent à la possibilité de les surmonter.

Cette dernière option est choisie par décision ministérielle le 28 juin 1989<ref name= "dospres2">Le viaduc de Millau : un ouvrage exceptionnel initié par le ministère de l’équipement,Шаблон:Opcit, p. 4</ref>. Il faut encore choisir entre deux familles de solutions locales pour franchir le Tarn<ref name= "Gillet2">Georges Gillet, Jean-Claude Mutel, Шаблон:Opcit, p. 5</ref> :

  • une famille « haute », faisant appel à un viaduc de 2 500 m passant à plus de 200 m au-dessus du Tarn ;
  • une famille « basse », descendant dans la vallée, franchissant le Tarn grâce à un ouvrage de 600 m puis atteignant le Larzac par un viaduc de 2 300 m prolongé par un tunnel.

Après de longues études et des consultations locales, la famille « basse » est abandonnée, notamment parce que le tunnel aurait traversé une nappe phréatique, et à cause de son coût, de l’impact sur l’urbanisation et de l’allongement de trajet qu'elle implique. Moins longue, moins chère et offrant de meilleures conditions de sécurité pour les usagers, la famille « haute » apparaît la plus intéressante. Le choix est arrêté par décision ministérielle le 29 octobre 1991. Ce choix aboutira à l'ouverture d'une enquête publique prescrite par arrêté préfectoral du 4 octobre 1993. La commission d'enquête rend ses conclusions le 7 février 1994.

Opposition

Plusieurs associations se sont manifestées contre le projet comme la WWF, France Nature Environnement, la Fédération Nationale des Associations d'Usagers des Transports (FNAUT) ou encore Agir pour l'environnement. Plusieurs élus politiques ont également critiqué le projet, comme le président de la région Auvergne Valéry Giscard d'Estaing. Des élus locaux, soutenus par les Verts et le Parti écologiste, avaient de même proposé début 1996 un contre-projet moins coûteux.

Les opposants ont avancé différents arguments :

  • le tracé plus à l'ouest sera un meilleur tracé : plus long de trois kilomètres mais trois fois moins cher avec ses trois ouvrages d'art classiques ;
  • l'objectif du viaduc ne sera pas atteint : du fait du péage, le viaduc sera peu emprunté et le viaduc ne sera pas la solution aux célèbres embouteillages de Millau ;
  • l'équilibre financier sera impossible : les revenus du péage ne permettront jamais le retour sur investissement et la société concessionnaire devra être soutenue par des subventions ;
  • la réalisation technique sera imparfaite, donc dangereuse et peu pérenne : les piles ne seront pas solides du fait qu'elles s'assoient sur la marne de la vallée du Tarn ;
  • le viaduc est une déviation : la diminution du passage des touristes à Millau freinera l'économie de la ville de Millau.
Déclaration d’utilité publique

Le projet est déclaré d'utilité publique, après avis du Conseil d'État, par décret en date du 10 janvier 1995 signé par le Premier ministre Édouard Balladur, et cosigné par le ministre de l'Équipement, des transports et du tourisme, Bernard Bosson, et par le ministre de l'Environnement, Michel Barnier<ref name= "DUP1">Décret du 10 janvier 1995 déclarant d'utilité publique les travaux de construction des sections de l'autoroute A 75 comprises entre Engayresque et Lasparets (mise aux normes autoroutières du P.R. 23,520 au P.R. 26,580), entre Lasparets et La Cavalerie Sud (du P.R. 26,580 au P.R. 66,820) y compris les voies de raccordement à Saint-Germain (R.D. 911), à la Côte rouge (R.D. 999) et à La Cavalerie (R.N. 9), de l'échangeur d'Engayresque, des aires de repos, de la section de route à créer pour assurer la continuité de l'itinéraire de substitution d'Engayresque à Lasparets ainsi que des mesures d'accompagnement sur cet itinéraire à Aguessac et à Millau, classant dans la catégorie des autoroutes l'ensemble de la voie comprise entre l'échangeur d'Engayresque et La Cavalerie Sud (du P.R. 22,700 au P.R. 66,820) dans le département de l'Aveyron et portant mise en compatibilité des plans d'occupation des sols des communes d'Aguessac, Millau, Creissels et Saint-Georges-de-Luzençon</ref>.

1991-1996 - Choix de l’ouvrage

Article détaillé : Dimensionnement du viaduc de Millau.

Le tracé retenu nécessite la construction d’un viaduc d’une longueur de 2 500 m. De 1991 à 1993, la division « Ouvrages d’art » du Sétra, dirigée par Michel Virlogeux, réalise des études préliminaires et vérifie la faisabilité d’un ouvrage unique franchissant la vallée. Compte tenu des enjeux techniques, architecturaux et financiers, la direction des routes met alors en compétition des bureaux d’études et des architectes afin d’élargir la recherche des solutions possibles. En juillet 1993, 17 bureaux d’études et 38 architectes se portent candidats pour la réalisation des premières études. Avec l’aide d’une commission pluridisciplinaire, la direction des routes sélectionne huit bureaux d’études pour les études techniques et sept architectes pour les études architecturales.

En février 1994, un collège d’experts, présidé par Jean-François Coste, identifie sur la base des propositions des architectes et des bureaux d’études, cinq familles de solutions. La compétition est relancée : cinq couples architecte-bureaux d’études, constitués des meilleurs candidats de la première phase, sont formés et chacun d’eux approfondit l’étude d’une famille de solutions.

Le 15 juillet 1996, Bernard Pons, ministre de l’Équipement, entérine la proposition du jury constitué d’élus, d’hommes de l’art et d’experts et présidé par le directeur des routes, à l’époque Christian Leyrit. La solution du viaduc multihaubané présentée par le groupement de bureaux d’études Sogelerg (aujourd’hui Thalès), Europe Études Gecti (aujourd’hui Arcadis) et Serf et le cabinet d’architectes Norman Foster & Partners est retenue<ref name= "dospres3">Le viaduc de Millau : un ouvrage exceptionnel initié par le ministère de l’équipement, Шаблон:Opcit, p. 5</ref>,<ref name="Sogelerg">Шаблон:Lien web</ref>.

Le groupement retenu affine les études de 1996 à 1998. À cette fin, il met en place un comité technique (animé par Bernard Gausset et Michel Virlogeux), supervisant des équipes d’études spécialisées affectées à chacun des domaines spécifiques : étude au vent, tablier en béton, tablier en métal, piles, géotechnique et équipements.

Après des essais en soufflerie, la forme du tablier est remaniée et le dessin des piles fait l’objet de minutieuses mises au point. Les études de détail ayant été menées à leur terme, les caractéristiques définitives de l’ouvrage sont approuvées à la fin de l’année 1998.

1998-2001 - Financement du projet

Choix d'un concessionnaire
Article connexe : Concession de service public en France.

La construction d’un tel ouvrage soulevait en outre des difficultés financières. L’État hésitait à investir deux milliards de francs de l’époque (320 millions d’euros). C’est ainsi qu’il abandonna l’idée d’une autoroute totalement gratuite pour recourir au péage sur le viaduc<ref group="D" name="maillon2">Шаблон:P.7</ref>. Mais ce recours au privé amena à son tour des difficultés d’ordre politique. Ainsi le président du Conseil général de l’Aveyron, Jean Puech, ne partage pas cette idée de recourir au péage.

C’est finalement Jean-Claude Gayssot qui, paradoxalement pour un ministre communiste, prend la décision de recourir au privé en signant le 20 mai 1998 le décret de mise en concession. Il est accompagné dans sa décision par la ministre de l’Aménagement du territoire et de l’environnement Dominique Voynet qui signe le document à contrecœur.

L'enquête publique est alors lancée et se déroule du 16 décembre au 26 janvier 1998<ref name="depeche98">Шаблон:Lien web</ref>. La commission d’enquête rend un avis favorable au projet le 28 février 1999. L'instruction mixte, à savoir l'ensemble des procédures internes de consultations des différentes administrations, s'achève le 31 août 1999 et le projet est finalement déclaré d'utilité publique, après avis du Conseil d’État, par décret cosigné par les ministres Jean-Claude Gayssot et Dominique Voynet le 23 novembre 1999<ref>Décret du 23 novembre 1999 déclarant d'utilité publique les travaux d'aménagements nécessaires à l'exploitation sous concession du viaduc de Millau compris dans la section Engayresque-La Cavalerie Sud de l'autoroute A 75, portant mise en compatibilité du plan d'occupation des sols de la commune de Millau (département de l'Aveyron), modifiant en ce qu'il a de contraire le décret du 10 janvier 1995 déclarant notamment d'utilité publique les travaux de construction de cette section et prorogeant les effets de ce décret</ref>.

Un avis de publicité est alors lancé par le gouvernement aux niveaux français et européen avec une remise de candidatures pour le 24 janvier 2000. Quatre consortiums répondent à l’appel d’offres<ref>Шаблон:Lien web</ref> :

  • le groupement Compagnie Eiffage du Viaduc de Millau (CEVM), avec Eiffage agissant pour le compte des entreprises Eiffage Construction et Eiffel ;
  • le groupement mené par l'espagnol Dragados, avec Skanska (Suède) et Bec (France) ;
  • le groupement Société du viaduc de Millau, comprenant les sociétés françaises ASF, Egis, GTM, Bouygues Travaux Publics, SGE, CDC Projets, Tofinso et l'italienne Autostrade ;
  • le groupement mené par la Générale Routière, avec Via GTI (France) et Cintra, Nesco, Acciona et Ferrovail Agroman (Espagne).

La Compagnie Eiffage du viaduc de Millau est finalement pressentie au terme de cette procédure. Mais il faut attendre la signature de l'ordonnance du 28 mars 2001<ref>Ordonnance n° 2001-273 du 28 mars 2001, transposant certaines dispositions de la directive 1999/62/CE du Parlement et du Conseil du 17 juin 1999 relative à la taxation des poids lourds pour l'utilisation de certaines infrastructures et réformant le régime d'exploitation de certaines sociétés concessionnaires d'autoroutes.</ref> ratifiée par la loi du 5 novembre 2001<ref>Loi n° 2001-1011 du 5 novembre 2001 portant ratification de l'ordonnance no 2001-273 du 28 mars 2001 transposant certaines dispositions de la directive 1999/62/CE du Parlement et du Conseil du 17 juin 1999 relative à la taxation des poids lourds pour l'utilisation de certaines infrastructures et réformant le régime d'exploitation de certaines sociétés concessionnaires d'autoroutes</ref> modifiant le régime des concessions autoroutières pour signer cette convention de concession entre l'État et la Compagnie EIFFAGE du viaduc de Millau. M. Jean-Claude Gayssot, ministre de l'équipement, des transports et du logement pour l'État et Jean-François Roverato, président-directeur général la Compagnie Eiffage du viaduc de Millau la signent le 27 septembre 2001. Elle est approuvée par décret no 2001-923 du 8 octobre 2001 du Premier ministre Lionel Jospin<ref>Décret n° 2001-923 du 8 octobre 2001 approuvant la convention de concession passée entre l'État et la Compagnie Eiffage du viaduc de Millau pour le financement, la conception, la construction, l'exploitation et l'entretien du viaduc de Millau et le cahier des charges annexé à cette convention</ref>. Le viaduc de Millau est ainsi le premier aménagement autoroutier à entrer dans le cadre de la réforme de 2001<ref group="Note">La concession de l'autoroute A28 entre Rouen et Alençon a été approuvée par décret du 29 novembre 2001 alors que celle du viaduc de Millau l'a été par décret du 8 octobre 2001.</ref>. Il est financé par des fonds privés dans le cadre d'un contrat de concession : l'ouvrage est la propriété de l'État français, les dépenses pour la réalisation et l'exploitation de l'ouvrage sont à la charge du concessionnaire, les revenus du péage sont attribués au concessionnaire.

Durée de la concession

La concession de l’ouvrage prendra fin le 31 décembre 2079<ref name= "decret2001">Décret n° 2001-923 du 8 octobre 2001, op. cit., art. 36</ref>. Cette durée de concession, de 78 ans et 2 mois, est exceptionnellement longue en comparaison des concessions autoroutières habituelles, en raison du nécessaire équilibre de l'opération. Il a souvent été dit qu’il était impossible de prévoir tous les aléas inhérents à la construction de l’autoroute sur une durée aussi longue ou que celle-ci risquait de conférer au concessionnaire une « rente de situation » par la perspective d’une sur-rentabilité<ref name ="concession">Шаблон:Article</ref>.

Sur le premier aspect, il ne s’agit bien entendu pas de tout prévoir sur 78 ans, pas plus que sur 35 ou 40 ans. Il s’agit simplement de prendre en compte un état d’imprévision en appréciant les risques éventuels et les jaugeant au vu des événements passés. Cette durée est en outre un facteur de sécurité qui permet d’étaler dans le temps les charges d’amortissement<ref>Patrick Vieu et Pascal Lechanteur, Шаблон:Opcit, p. 32</ref>.

Quant au risque de sur-rentabilité, les parties ont mis en œuvre un dispositif de fin anticipée de la concession. Ainsi l’article 36 du cahier des charges prévoit que l’État peut demander qu’il soit mis un terme à la concession sans aucune indemnité, moyennant un préavis de 24 mois, dès lors que le chiffre d’affaires réel cumulé, actualisé à fin 2000 au taux de 8 %, dépasse trois cent soixante-quinze millions d'euros. Cette clause ne peut s’appliquer qu’à partir du 1er janvier 2045.

Bien que la concession ne porte que sur 78 ans, le concessionnaire a dû concevoir et réaliser le viaduc pour une durée d’utilisation de projet de 120 ans<ref name= "decret2001.45">Décret n° 2001-923 du 8 octobre 2001, op. cit., art. 4.5</ref>. La durée d’utilisation de projet est la durée pendant laquelle le viaduc doit pouvoir être utilisé comme prévu, en faisant l’objet de l’entretien et de la maintenance escomptés mais sans qu’il soit nécessaire de faire des réparations majeures.

Coût global

Cinq ans après avoir retenu la solution de Norman Foster, le concessionnaire est retenu et les travaux peuvent commencer. Le coût de réalisation de l'ensemble des travaux est évalué à près de 400 millions d'euros<ref>Шаблон:Lien web</ref>. Aucune subvention publique n’a été nécessaire pour l’équilibre, mais le décompte total ne prend pas en compte l’ensemble des travaux réalisés par l’État pour aménager les abords.

Les acteurs

Article détaillé : Liste des acteurs de la conception et de la réalisation du viaduc de Millau.

L'architecte du viaduc est le britannique Sir Norman Foster.

Le consortium de construction du pont comprend la société Eiffage TP pour la partie béton, la société Eiffel pour le tablier métallique<ref group="Note">Lointain clin d'œil de l'histoire au viaduc de Garabit, pont ferroviaire en acier construit en 1884 par Gustave Eiffel dans le Cantal voisin</ref>, la société Enerpac pour le poussage hydraulique du tablier<ref group="Note">Site officiel de l'entreprise Enerpac</ref>, la société Appia pour l'emploi du revêtement bitumeux sur le tablier et la société Forclum pour les installations électriques. C'est en fait tous les métiers du groupe Eiffage qui ont participé au chantier.

La seule entreprise d'un autre groupe ayant eu un rôle « noble » sur ce chantier est « Freyssinet », filiale du groupe Vinci spécialisée en précontrainte, qui s'est vue confier la mise en place et la mise en tension des haubans, la filiale de précontrainte du groupe Eiffage s'étant chargée de la précontrainte des têtes de piles.

La maîtrise d'œuvre a été confiée à la SETEC, branche Travaux publics et industriels, et en partie à l'ingénierie SNCF.

La technique du tablier en acier et le poussage hydraulique du tablier (solution lauréate issue du concours « Mise au point et étude complète de la solution métallique lancée ») ont été conçus par le bureau d'ingénieurs liégeois Greisch (BEG) dont les études d'exécution comprenaient les calculs généraux et calculs de résistance aux vents de 225 km/h, les calculs des phases de lançage, le dimensionnement et le calcul du tablier, des pylônes et du haubanage, le dimensionnement des équipements, la conception des méthodes d'exécution et des ouvrages provisoires. Enfin, en suivant une procédure déjà appliquée pour de multiples ponts et viaducs haubanés par ses ingénieurs, Greisch assura sur place une assistance aux opérations de lançage, de montage et de mise en œuvre des haubans sous le contrôle en temps réel du centre de calcul de l'université de Liège en Belgique.

Trois ans de construction

Article connexe : Chronologie détaillée de la construction du viaduc de Millau.

La première pierre est posée le 14 décembre 2001 et le viaduc est mis en circulation le 16 décembre 2004<ref group="D" name="maillon2_p13">Шаблон:P.13</ref>, soit trois ans seulement après le début des travaux.

Janvier 2002 – mars 2002 : fondations des piles

Les travaux de creusement des puits de fondation sur lesquels reposeront les sept piles du viaduc commencent dès janvier 2002<ref group="D" name ="piles_p29">Шаблон:P.29</ref>.

Après ferraillage, les puits sont bétonnés et une semelle de trois à cinq mètres d'épaisseur est coulée pour les sept piles. Chaque opération nécessite le coulage en une seule fois de 2 000 m3 de béton sur une trentaine d’heures. D’une surface de 200 mètres carrés à la base, équivalente à la surface d’un terrain de tennis, les piles se termineront à leur sommet avec une surface de seulement 30 m2.

Mars à novembre 2002 : construction des culées

De mars à juin 2002 a lieu la construction de la C8, côté plateau du Larzac au Sud, puis de juin à novembre 2002 est construite la culée C0. C’est à partir de ces culées que seront ensuite lancés les éléments de tablier. Les caissons sont soudés les uns aux autres à l'arrière des éléments déjà lancés, sur une plateforme en arrière des culées, sur une longueur de 171 mètres. Chaque partie de tablier est ensuite lancée dans le vide puis est appuyée sur une appui provisoire ou définitif<ref group="D" name ="piles5_p30">Шаблон:P.30</ref>.

Avril 2002 à décembre 2003 : construction des piles

Chaque fait l’objet d’un chantier spécifique, avec ses propres équipes et son chef de pile. Au début de l’été 2002, six fûts de piles ont déjà commencé et 23 000 m3 ont déjà été coulés. L’avancement se fait à raison de 25 mètres cubes à l’heure. Chaque « levée » de béton, correspondant à une élévation de quatre mètres de la pile, réclame 200 m3 et est programmée tous les trois jours, car il faut compter deux jours et demi de mise au point. Le coulage commence en milieu d’après-midi pour se terminer vers deux heures du matin<ref name="journal2">Шаблон:Article</ref>.

En juillet 2002, près de huit cents personnes sont déjà intervenues sur le site, mais certaines sont déjà parties : trois cents peuvent y être comptabilisées en cet été 2002. En hiver 2002, on en compte alors près de cinq cents : plus de trois cents ouvriers en génie civil, environ cent ouvriers sur le tablier en construction derrière les culées et 80 cadres et ingénieurs<ref group="D" name="p35">Шаблон:P.35</ref>.

La verticalité des piles est assurée grâce à des guidages laser et GPS. Le 21 février 2003, la P2 dépassait 141 mètres et faisait tomber le record de France détenu par les viaducs de Tulle et de Verrières. Le 12 juin, elle atteint la hauteur de 183 mètres, battant ainsi le record du monde des 176 mètres du viaduc de Kochertal en Allemagne. Le 20 octobre 2003, elle culmine à 245 mètres.

Le jeudi 20 novembre 2003, les sept piles sont achevées. À cette occasion, un tube de cuivre a été glissé dans les dernières strates de béton de la pile P3. Il contient les noms des 537 personnes qui ont travaillé à l’érection des piles et une pièce commémorative de 1,5 euros édité lors du lancement de la monnaie européenne, avec un beffroi côté face et un viaduc côté pile<ref name="piles6_p48">Шаблон:P.48</ref>. Le 9 décembre est organisé un grand feu d’artifice. <div style="clear:both;" />

2004 : construction des chaussées et mise en service

]] Pendant le printemps 2004, un test du complexe d’étanchéité a eu lieu à Rivesaltes (Pyrénées-Orientales) sur un caisson témoin. Fin juillet, un essai grandeur nature de pose d'enrobé a été réalisé sur le tablier lui-même.

D’avril à septembre 2004 ont été mises en œuvre les plaques d’étanchéité. Dans un premier temps, un d’un mètre de largeur a été mis en œuvre manuellement, de part et d’autre de l’ouvrage, sur la rive de la chaussée. À partir de la mi-juillet les machines d’application des sociétés Sacan et Siplast Icopal ont pris le relais pour assurer la pose de l’étanchéité sur la section courante de l’ouvrage.

Les enrobés ont été mise en œuvre du 21 au 24 septembre 2004 par la société Mazza, filiale d’Appia, associée avec plusieurs sous-traitants et de nombreuses autres filiales du groupe.

Les essais de chargement statique (21 cas de chargement au total nécessitant l’utilisation de 32 camions de 30 t environ) et dynamiques consistant en deux « lâchers » de câbles de 100 t chacun, pour simuler une rupture de haubans, se sont déroulés entre le 17 et le 25 novembre 2004<ref name ="Essais">Шаблон:Article</ref>.

L’ouvrage est inauguré par le Président de la République Jacques Chirac le mardi 14 décembre 2004<ref>Шаблон:Lien web</ref> puis mis en service le 16 décembre 2004 à 9 h 00.

Description de l'ouvrage

Le viaduc est un pont à haubans de 2 460 mètres de longueur. Il traverse la vallée du Tarn à près de 270 m de hauteur au-dessus de la rivière. Son tablier de 32 mètres de large accueille une autoroute de 2 fois 2 voies et deux voies de secours.

Il est maintenu par sept piles prolongées chacune par un pylône de 87 m de hauteur auquel sont arrimées 11 paires de haubans.

Le pont a un rayon de courbure de 20 km, ce qui permet aux véhicules d'avoir une trajectoire plus précise qu'en ligne droite. Des structures de béton assurent l’appui du tablier à la terre ferme sur le Causse du Larzac d’un côté et le Causse rouge de l’autre.

Les piles et les culées

Fondations et semelles

Chaque pile prend appui sur des semelles en béton reposant sur quatre puits marocains dont les diamètres varient entre 4,50 et 5 m et la longueur est variable entre 9 m et 17 m. Les puits ont été creusés à l’aide de pelles hydrauliques de type Liebherr 942 équipées de brise-roche par passes successives de 1,50 m avec confortement successif en béton projeté. Les puits des appuis P4 à P7 ont été élargis en partie basse, constituant ainsi une forme de « pattes d’éléphant<ref group="T" name ="travaux803p20">Шаблон:P.20</ref> ».

Les semelles présentent une largeur de 17 mètres et une longueur de 24,5 mètres pour une épaisseur variable entre 3 et 5 m. Les volumes de béton à mettre en œuvre varient ainsi de 1 100 à 2 100 m3. La durée de bétonnage a pu atteindre jusqu’à trente heures.

L’élévation de température du béton, liée à la prise du ciment, a pu être limitée grâce au choix d’un ciment à faible dégagement de température et à la réduction de son dosage. L’utilisation de fumée de silice (à raison de 30 kg/m3) a en particulier permis de réduire ce dosage à 300 kg/m3 et de limiter la variation de température à 35 °C, contre 50 °C possibles sans fumée de silice, ce qui a conduit avec un béton à la température ambiante de 25 °C à une température maximale de 60 °C qui est le niveau requis pour éviter le risque de réaction sulfatique dans un milieu où il peut y avoir circulation d’eau,. Il a par ailleurs été calculé que la carbonatation des bétons des semelles ne dépassera pas 44 mm en 120 ans, épaisseur inférieure aux 50 mm d’enrobage des aciers mis en œuvre<ref group="T" name ="piles2_p21">Шаблон:P.21</ref>.

Descriptif des piles

Les piles ont été dimensionnées pour résister, en exploitation comme en construction, aux charges verticales apportées par le tablier, aux déplacements de leur tête sous les effets de dilatation thermique du tablier et aux effets du vent. Dans le sens transversal, la largeur de la pile varie paraboliquement de 27 m à la base à 10 m au sommet, pour la pile P2, la plus haute. Monolithiques à leur base, elles sont dédoublées sur les 90 mètres supérieurs. Ceci ne résulte pas d’une recherche d’esthétique, mais plutôt de la prise en compte des contraintes auxquelles ces piles sont soumises, et en particulier la dilatation du tablier qui peut atteindre 40 cm<ref group="G" name ="Greisch1">Шаблон:P.7-8</ref>.

Les hauteurs des piles sont variables en fonction de la topographie du site et du profil en long de l’ouvrage<ref group="D">Шаблон:P.40</ref> :

P1 P2 P3 P4 P5 P6 P7
94,501 m 244,96 m 221,05 m 144,21 m 136,42 m 111,94 m 77,56 m

Construction des piles

Un béton hautes performances (BHP) B60 a été utilisé pour construire les piles. Il a été fabriqué par deux centrales Liebherr d’une capacité nominale de 80 m3 /h. Les trente premiers mètres des piles ont été bétonnés à la pompe. Au-delà, le bétonnage des levées de pile a été réalisé à la benne à l’aide de chacune des grues à tour Potain K5-50C de 65 m de flèche et d’une capacité de 20 tonnes<ref group="T" name ="piles3_p22">Шаблон:P.22</ref>.

Tous les coffrages extérieurs progressent vers le haut d’une phase à l’autre, hydrauliquement et sans grue, à l’aide de coffrages auto-grimpants ACS (Automatic Climbing System) élaborés par la société Péri SAS<ref>Шаблон:Lien web</ref>,<ref group="Note">Шаблон:Lien web</ref>.

Chaque levée de bétonnage est faite sur une hauteur de quatre mètres. En partie basse des piles, la durée de bétonnage réalisée à la benne de 3 m3 était comprise entre six et sept heures en moyenne. La quantité de béton la plus importante mise en œuvre dans une levée a été de 322 m3 pour la levée 62 de la pile P2, la plus haute, pour une durée de bétonnage de douze heures. En partie haute des piles, le rythme de bétonnage était de 15 à 25 m3 par heure.

Les fûts dédoublés des piles ont été précontraints sur toute leur hauteur afin de réduire les efforts de traction extrêmes et donc de retarder et de limiter leur fissuration dans les conditions des états limites de service. Cette précontrainte est faite à l'aide de huit câbles 19T15 Super du procédé Dywidag,<ref group="T" name ="piles2_p21"> Шаблон:Lien web</ref> :

  • quatre sont ancrés dans des bossages en saillie juste au-dessus du palier situé à -60 m ;
  • quatre autres sont ancrés dans des bossages en saillie entre les deux paliers de la jonction des jambes à -90 m, juste au-dessus du palier inférieur.

Les gaines de précontrainte sont des tubes lisses en acier de diamètre 101,6 mm intérieur. L'enfilage des torons depuis la partie basse du câble n'étant pas réalisable, seul l'enfilage par le haut et toron par toron était possible. Pour l'enfilage, des précautions ont été prises au droit des ancrages inférieurs et supérieurs pour assurer le maintien des câbles dans leur gaine avant la mise en tension. Cette dernière se fait par l'ancrage actif sur le chevêtre de la pile (ancrage passif en partie basse) ,.

Une pompe d'injection capable d'injecter les 100 mètres de câble depuis l'ancrage bas était installée sur le palier de séparation des deux fûts dédoublés (-100 m environ). Des évents ont été positionnés au niveau des deux paliers intermédiaires des fûts dédoublés afin de mieux contrôler la montée du coulis et servir éventuellement de point d'injection en cas de problème,.

Les appareils d’appuis fixes sur piles (quatre au total par pile soit deux par fût dédoublé) sont du type à calottes sphériques présentant une surface de glissement en alliage de bronze très spécifique. En effet, compte tenu de la taille des appareils d’appui, il n’était pas possible de faire reprendre le glissement par le matériau le plus classique et le plus utilisé à ce jour qu’est le téflon<ref group="T" name ="piles4_p25">Шаблон:P.25</ref>.

Construction des culées

Les culées sont du type culées creuses d’une largeur de 13 m, plus étroites que le tablier, et munies d’encorbellements latéraux qui prolongent la forme du tablier jusqu’à son entrée dans le terrain naturel. Le béton mis en oeuvre est un béton B 35G 0/14 dosé à 385 kg/m3 de ciment.

La culée nord, la plus proche de la zone de la barrière de péage du viaduc, renferme les locaux techniques nécessaires à l’exploitation du viaduc. Le tablier repose sur les massifs d’appuis de chacune des culées par l’intermédiaire d’appuis glissants.

Le tablier

Descriptif

Le surplombe la vallée du Tarn à 270 m au point le plus haut et relie le causse du Larzac au causse rouge. Il présente une légère pente de 3,025 % correspondant à une dénivelée de 74 mètres entre le Nord et le Sud ; destinée à rassurer l'usager par une meilleure visibilité ainsi qu'un rayon à plat de 20 km pour créer l'illusion que le viaduc ne s'arrête jamais<ref name ="chiffres">Шаблон:Lien web</ref>.

Le tablier est un caisson fermé et caréné présentant un profil aérodynamique pour pouvoir résister à des vents de plus de 205 km/h.

Il est constitué d’une dalle orthotrope comme la partie centrale du pont de Normandie<ref>Шаблон:Lien web</ref>. Chacun des 173 éléments présente une largeur de 27,60 m et une hauteur de 4,20 m. Ils sont constitués de tôles raidies et de profilés standardisés. Ces caissons sont prolongés à chacune de leur extrémité d'une corniche de 2,20 m de large, supportant elle-même un écran brise-vent<ref group="G">Шаблон:P.4</ref>. Afin d’éviter ou du moins de ralentir la progression de la corrosion dans le tablier, celui-ci est muni d’un système de ventilation d’air sec, de plusieurs capteurs d’humidité et d’un système de récupération des eaux de ruissellement efficace<ref name="OTUApeint">Шаблон:Lien web</ref>.

La longueur totale du tablier est de 2 460 m. Le poids total d'acier dépasse les 36 000 tonnes soit environ quatre fois celui de la tour Eiffel (dont le poids total est de 10 100 tonnes)<ref group="D" name="p53">Шаблон:P.53</ref>,.

Fabrication

La section transversale du tablier, qui a été proposée par Eiffel, tient compte des possibilités de fabrication en usine, de transport et de montage sur site. Elle comprend un caisson central de largeur 4 m et de hauteur 4,20 m ; des panneaux intermédiaires raidis de 3,75 à 4,20 m ; deux caissons latéraux de 3 84 m et des bracons (en bleu sur le schéma ci-dessus) en profilé métallique UPN rigidifiant transversalement le tout<ref group="T" name ="travaux803p26">Шаблон:P.26</ref>.

Les caissons centraux ont été fabriqués par l'entreprise Eiffel dans son usine de Fos-sur-mer<ref>Шаблон:Lien web, diaporama de 50 photos</ref>, les caissons latéraux ont quant à eux été fabriqués dans l'usine de Lauterbourg, en Alsace<ref>Шаблон:Lien web, diaporama de 48 photos </ref>.

Afin de pouvoir construire les éléments dans les délais impartis, l’entreprise Eiffel a investi dans des équipements de très haute technologie dont en particulier une machine d’oxycoupage à plasma et un robot de soudage à deux têtes. La machine d’oxycoupage permet de porter très rapidement la température du mélange flamme et oxygène à 28 000 degrés grâce à l’injection du plasma dans ce mélange. Le chalumeau ainsi constitué, véritable « couteau à métal » peut ainsi découper avec une précision extrême jusqu’à 1,80 m d’acier à la minute<ref group="T" name ="travaux803p27">Шаблон:P.27</ref>.

Assemblage et lançage

L’assemblage des caissons a été effectué sur des chantiers in situ à chaque extrémité de l’ouvrage. Ceci a permis d’éviter d’effectuer ces tâches en grande hauteur. Celui-ci a demandé 20 mois de travail et mobilisé 150 personnes<ref name="techn"> Шаблон:Lien web</ref>.

C’est par lançage, c'est-à-dire par translation avec avancée dans le vide en porte-à-faux, que les éléments de tablier ont été mis en place. Chaque élément de la longueur d’une demi-travée, soit 171 m, a ainsi été poussé dans le vide grâce à des translateurs puis liaisonné avec celui déjà en place<ref group="Note">Voir une vidéo présentant l’ensemble des étapes-clés de la construction : piles, lançage des tabliers, pylônes, etc, sur leviaducdemillau.com, site officiel</ref>

Pour franchir la première demi-travée entre les appuis de lançage que constituent les piles et les palées provisoires, les 342 premiers mètres du tablier lancé côté nord et du tablier lancé côté sud ont été équipés du pylône définitif sans son chapeau supérieur (P2 au nord et P3 au sud soit une hauteur totale de 70 m et de six paires de haubans définitifs sur les onze que comporte chaque nappe de haubans<ref group="T" name ="travaux803p30">Шаблон:P.30</ref>.

Il y avait deux translateurs sur les palées provisoires à l'extrémité du viaduc, quatre sur les autres palées provisoires, quatre translateurs par piles béton et six translateurs sur la route de chaque coté du viaduc soit un total de 64 translateurs<ref group="Note">Voir une vidéo du système de translation du tablier</ref>. Ils étaient séparés de 4 mètres en latéral et de 21 mètres en longitudinal. Les translateurs étaient couplés par deux et étaient posés sur huit vérins simple effet qui servaient à guider le tablier. Sur chaque translateur, il y avait un vérin de levage de 250 t de poussée et deux vérins d'avancement de 60 t de poussée chacun. Chaque translateur mesure sept mètres de long, un mètre de haut et pèse quatorze tonnes et fonctionnait à sept cents bars de pression. La vitesse d'avancement était de 60 cm en quatre minutes, soit de 9 m en une heure et de 171 m en deux jours. Chaque poussée était guidée par GPS et Guidée laser<ref>Шаблон:Lien web</ref>,<ref>Шаблон:Lien web, p. 23-30</ref>.

L’écran brise-vent

Le caisson du tablier est prolongé sur chacun de ses côtés par un écran brise-vent qui contribue à la forme aérodynamique générale du tablier et donc à la stabilité générale de l’ouvrage et protège les usagers du viaduc des rafales de vent qui pourraient être dangereuses. Le matériau utilisé est un Plexiglas spécial fabriqué par la société allemande Degussa, un verre acrylique thermoformable transparent deux fois plus léger qu’un verre minéral utilisé habituellement pour la réalisation de murs anti-bruit, permettant ainsi de limiter la surcharge du tablier. L’usine autrichienne qui a fabriqué le produit a dû mettre au point des étuves spécifiques afin de répondre au profil spécial exigé par l’architecte. Par ailleurs des fils de polyamide transparents anti-fragmentation sont incorporés à l’intérieur du matériau, évitant ainsi une dispersion des débris qui pourraient être particulièrement dangereux en cas de chute 245 mètres plus bas<ref name ="enrobé">Шаблон:Lien web</ref>.

La chaussée

Pour éviter de faire subir à l’ouvrage un poids trop important, le principe d’une fine couche de roulement posée sur la chape d’étanchéité de l’ouvrage a été retenu. La difficulté consistait à concevoir un complexe étanchéité-roulement qui puisse suivre les déformations du support parfois très importantes, le protéger contre la corrosion et assurer les fonctions principales d’une couche de roulement : confort et sécurité.

Performances attendues

Selon le cahier des charges, cette structure (feuille d’étanchéité + enrobé) devait satisfaire à des essais très exigeants portant sur les liants, les granulats et le complexe proprement dit. Un essai particulier, l’essai de flexion sous moment négatif ou essai de flexion cinq points, permettait de mesurer la performance de la couche de roulement et du collage de l’étanchéité sous trafic. Dans le cadre de cet essai, le complexe d’étanchéité pour une plaque d’acier de 14 mm devait satisfaire les critères suivants : aucune fissure à deux millions de cycles pour une températu

Répertorié dans les catégories suivantes:
Poste un commentaire
Trucs et astuces
Naohiro Watanabe
15 may 2015
Well worth a visit. It's very informative. Just stand under the bridge and marvel at it.
Robin Bertels
2 août 2015
At 343m, it's the tallest bridge in the world!
Top Gear film locations
1 december 2013
TopGear Series 7, Episode 3. The trio bring their favourite supercars (Ford GT (JC), Ferrari F430 (JM), and the Pagani Zonda (RH)) here in an attempt to explain the point of the supercar.
Eric W...
1 december 2015
N'hésitez pas à vous arrêter à l'aire panoramique offrant une vue spectaculaire sur la vallée occupée par le village de Millau, les montagnes abruptes et les arches aériennes du fameux pont éponyme.
ᴡ Nike
1 december 2012
«Мост над облаками» один из самых высоких в мире. Одна из его опор имеет высоту 341 м. Общая длина составляет 2460 м. Проезжая по этому архитектурному чуду, кажется, будто взлетаешь.
Green6
31 août 2015
Per gli architetti e gli ingegneri credo sia tappa obbligatoria. Emozionante e davvero particolare. Questo ponte si inserisce così sottilmente nell'interno che tutto sembra davvero bilanciato!

Hôtels à proximité

Voir tous les hôtels Voir tout
Hotel Mercure Millau

à partir $116

ibis Millau

à partir $94

Campanile Millau

à partir $51

Citotel Jalade

à partir $43

Hôtel de la Capelle

à partir $64

Hotel Emma Calve

à partir $83

Sites recommandés à proximité

Voir tout Voir tout
Ajouter à la liste de souhaits
J'ai été ici
Visité
Micropolis

Micropolis, la cité des insectes est un espace dédié à l'e

Ajouter à la liste de souhaits
J'ai été ici
Visité
Chaos de Montpellier-le-Vieux

Montpellier-le-Vieux est un chaos rocheux ruiniforme sur le Causse

Ajouter à la liste de souhaits
J'ai été ici
Visité
Gorges du Tarn

Les gorges du Tarn sont un canyon creusé par le Tarn entre le Causse

Ajouter à la liste de souhaits
J'ai été ici
Visité
Aven Armand

L'aven Armand est une grotte située en Lozère entre Meyrueis et S

Ajouter à la liste de souhaits
J'ai été ici
Visité
Cirque de Navacelles

Le cirque de Navacelles est un cirque naturel de la région Occitanie

Ajouter à la liste de souhaits
J'ai été ici
Visité
Cathédrale Notre-Dame de Rodez

La Cathédrale Notre-Dame de Rodez (Aveyron) est le siège de l

Ajouter à la liste de souhaits
J'ai été ici
Visité
Château de Florac

Le château de Florac, situé à Florac en Lozère, est le siège du Parc

Ajouter à la liste de souhaits
J'ai été ici
Visité
Château de Miral

Le château de Miral est un château situé à Bédouès dans le dépar

Attractions touristiques similaires

Voir tout Voir tout
Ajouter à la liste de souhaits
J'ai été ici
Visité
Pont de Galata

Le Pont de Galata (en turc Galata Köprüsü) est un pont d'Istanbul en

Ajouter à la liste de souhaits
J'ai été ici
Visité
碓氷第三橋梁 (めがね橋)

碓氷第三橋梁 (めがね橋) est une attraction touristique, l'une des Pont de S

Ajouter à la liste de souhaits
J'ai été ici
Visité
Pont Rama IX

Le pont Rama IX (en thaï : สะพานพระราม 9) est un pont à haubans

Ajouter à la liste de souhaits
J'ai été ici
Visité
Pont Suramadu

Le pont Suramadu (en indonésien Jembatan Suramadu), ou pont

Ajouter à la liste de souhaits
J'ai été ici
Visité
Pont Dom-Luís

Le pont Louis Шаблон:Ier (Ponte Luís I ou Luiz I, selon l'orth

Voir tous les lieux similaires